WEST MICHIGAN ENVIRONMENTAL ACTION COUNCIL

Rainwater Rewards Stormwater Calculator Valuing Ecosystem Services for Green Infrastructure

Who is WMEAC?

Informing, engaging and nurturing an inclusive community, acting together to protect natural resources, mitigate climate change and build a resilient West Michigan

Protecting Water Resources

Non-Profit 501C3

West Michigan's voice for environmental protection since 1968

Lead on development of current economic valuation project

Integrated Valuation of Ecosystem Services Tool (INVEST)

Generation 1: Valuing Ecosystem Services

Valuing Ecosystem Services

• Benefits people obtain directly or indirectly from ecological systems

West Michigan's Green Infrastructure

- Forests, grasslands and prairies
- Urban and rural parks and trails
- Wetlands, lakes, rivers and streams
- Shoreline, beaches, and dunes
- Cropland and orchards
- Fish and wildlife

Green Infrastructure Valuation

- Valuation of ecosystem services
 - Region/County-Level: development of online tool (INVEST)
 - Parcel Level: development of ecosystem services calculator (Owasippe)

	A	В	С	D	E	F	G		
1	West Michigan Ecosystem Services Calculator Output Page								
2									
3		Grass, Shrub & Prairie	Forest Low Value	Forest High Value	Water	Wetlands Low Value Wetlands High Val			
4	Food Production	n/a	n/a	n/a	n/a	n/a	n/a		
5	Raw Materials	n/a	\$9	\$63	INS	INS	INS		
6	Aesthetic/Amenity	\$10	\$0	\$6	\$18	\$13	\$13		
7	Recreation	\$69	\$69	\$69	\$250	\$125	\$250		
8	Fish/Wildlife Habitat	\$21	\$24	\$24	<i>Q</i> 200	Ç125	<i>\$250</i>		
9	Pollination	INS	NEI	NEI	n/a	NEI	NEI		
10	Nutrient Cycling	NEI	NEI	NEI	NEI	\$4	\$8		
11	Waste Assimilation	NEI	NEI	NEI	NEI	NEI	NEI		
12	Erosion Control	NEI	\$0	\$4	n/a	NEI	NEI		
13	Water Regulation	NEI	NEI	NEI	NEI	NEI	NEI		
14	Water Supply	n/a	n/a	n/a	\$64	\$32	\$64		
15	Value Per Acre/Per Year	\$100	\$116		\$332	\$286			
16	5								
17	Annual Value for All Acres	\$25,755	\$475,863		\$61,746	\$34,686			
18						TOTAL YEARLY VALUE \$598,049			
19	PV of Future Yearly Values								
20	Value Per Acre/Per Year	\$1,426	\$1,654		\$4,745	\$4,088			
21	Annual Value for All Acres	\$367,931	\$6,798,039		\$882,081	\$495,511			
22						TOTAL PRESENT VALUE	\$8,543,562		

INVEST

- Online educational tool
 <u>http://INVEST.wri.gvsu.edu</u>
- Places monetary value on ecosystem services associated with West Michigan land uses
- \$ per acre/mile per year

Regional Value Estimate for Ecosystem Services

\$1.8 billion per year

Legend

- Red: > \$10,000*
- Orange: \$2,001 \$10,000*
- Green: \$201 \$2,000*
- Blue: \$0 \$200*
- Grey: Developed Area/Not Valued

Rein in the Runoff

Generation 2: Valuing Stormwater Green Infrastructure

Figure 4-4. PLOAD results with and without BMPs for Total Phosphorus mapped to the ArcSWAT sub-basins for the Spring Lake Watershed's 2006 land use and land cover.

Table 5-6. Cost Effectiven	ess Associated wit	h Pollutant Load Re	ductions Per Treate	ed Acre.			
BMP	Total Installation	Total Opportunity Cost ¹	25 Year Maintenance Costs ²	Total Cost	Net Costs Associated with Pollutant Load Reductions ³		
	Cost				ТР	TN	TSS
Bioretention/ Rain Gardens	\$21,500	(\$17,100)	\$3,773	\$8,173	\$13,622	\$24 <mark>,</mark> 038	\$8,603
Vegetated/ Bio-Swales	\$16,620	(\$20,500)	\$483	(\$3,396)	(\$7,718)	(\$8,490)	(\$5,660)
Green Roofs	\$686,070	(\$442,765)	\$9,056	\$252,361	\$315,451	\$315,451	\$315,451
Pervious Pavement	\$371,100	(\$340,400)	\$0 ⁴	\$30,700	\$56,330	Not Calculated	\$33,736
Constructed Wetlands	\$22,500	(\$25,900)	\$483	(\$2,917)	(\$6,077)	(\$3,740)	(\$3,241)

1 These represent added costs associated with traditional stormwater management practices and/or replacement costs.

2 Maintenance costs were the net present value of annual maintenance costs from Table 5-5 over 25 years, given a 5% discount rate.

3 These costs were adjusted based upon the BMPs' ability to reduce pollutant loads (Table 5-4).

4 Zero maintenance costs for pervious pavement are based on the assumption that current pervious pavement technologies were used and that high efficiency street sweeping is already in place.

Owasippe Scout Camp Demonstration Project

Generation 3: Developing a Calculator Spreadsheet

Valuations

Owasippe Scout Reservation

Data Sources: Valuations modeled by Dr. Paul Isely, GVSU, Roads and hydrology based on Michigan Geographic Data Framework, 2010.

Ecosystem Services Calculator Tool

	, <mark>, , , , , , , , , , , , , , , , , , </mark>					
	Home Insert Page Layout	Formulas Data	Review			
Fri	om From From From Other tess Web Text Sources - Get External Data	g ons Refresh All → ∞ Edit Connectio	erties Links			
	E26 • (* fx					
	A+t	В	С			
1	Data Input					
2						
3	Density Info	Per Sq Mile	Per Acre			
4	Population Density surrounding Loca	tion 57.8	0.0903125			
5	Housing Density Surrounding Locatio	n 23.6	0.036875			
6	Note: Data is from Census		-			
7						
8	Income Info					
9	Houshold income in surrounding area	\$42,000.00)			
10	Note: In current Year Dollars Censu	JS				
11						
12	Value of Trees 2010	Value	Std Dev			
13	Uppland	\$237.00	\$61.00			
14	Lowland	\$304.00	\$121.00			
15	Pine	\$830.00	\$830.00 \$710.00			
16	Note: These values are for the Cadillac region from 2007-2010 during a r					
17	Note: All values derived from Timber	source Data				
18						
19	Inflation	Current	Adjustment			
20	Current CPI in X Base Year	218	1.08134921			
21	Note CPI needs to be "CPI for All Urba	an Consumers (CPI-	U) 1982-84=10			
23	Housing Value					
24	Average housing price in county	\$105,000.00	1			
25						
26						

Current Value: \$582,526 per year

Developed Value: \$183,196 per year

Public Land/Access Value: \$1,450,383 per year

Muskegon Lake Habitat Restoration

Generation 4: Valuing Great Lakes Area of Concern (AOC) Restoration

Rainwater Rewards

Generation 5: Building an Online Stormwater Calculator for Small and Medium Cities in the Great Lakes Basin

Great Lakes Restoration Initiative Funding

Project Pilot Cities

Collaborative Water Quality Projects and Programming

- 13th Annual Mayors' Grand River Cleanup
- Rain Barrel Stormwater Education Program
- 15 to River Public Service Announcement
- Grand Rapids Stormwater Planning
 - Community-Based Stormwater Initiative
 - Sustainably Managing Stormwater
 - Sustaining Stormwater Investments
 - 2013 Flood Sandbag Volunteers
 - Stormwater Oversight Commission
 - Vital Streets Oversight Commission
- Rainwater Rewards Stormwater Calculator

The unit of analysis was the census block.

Values were estimated using benefit transfer.

Benefits of green infrastructure practices (\$/ft³/year)

10

Infrastructure / SMP type	SMP size (for 3,000 ft ³ WQv per 1" event)	PV benefits (\$/ft³ WQv)	PV cost of green (\$/ft ³ WQv)	PV cost of gray (\$/ft ³ WQv)	Net Present Value (\$/ft ³ WQv)
Porous asphalt	37,897 ft ²	\$1.13	\$5.38	\$4.99	\$0.74
Green roof	37,200 ft ²	\$2.93	\$12.47	\$8.01	\$-1.54
Rain garden	2,145 ft ²	\$2.43	\$0.90	-	\$1.53
Bioretention infiltration	3,049 ft ²	\$1.37	\$1.81	-	\$-0.44
Conserve natural area	37,897 ft ²	\$6.35	\$2.62		\$3.72
Street tree planter / tree pit	342 trees	\$5.79	\$4.29	-	\$1.50
Rain barrel	2 barrels*	\$1.07	\$0.10		\$0.97

Basic information you'll need...

- Location of proposed project
- Type(s) of green infrastructure being considered
- Size (ft²) or number of green infrastructure practice

What the calculator tells you...

- Stormwater runoff at that location (ft³)
- Runoff reduced by installing green infrastructure
- Return on investment over 50 years
- Pollutants reduced by installing green infrastructure

v Advanced settings

Will roof be installed on a LEED-certified building? Installation cost (\$/ft²)

Pollution reduction

TSS reduction % Phosphorus reduction %

Runoff reduction

Drainage area that is impervious (%)

Depth of soil media (ft) Porosity of soil media (%) Volume provided in soil media (ft³)

Depth of drainage layer (ft) Porosity of drainage layer (%) Volume provided in drainage layer (ft³)

Depth of ponding above surface (ft) Volume provided in ponding layer (ft³)

Total volume provided (ft³)

Infrastructure capacity (ft³): Runoff reduced per rainfall event (ft³): Runoff reduced (%): Runoff reduced per year (ft³) :

-- of --

Rainwater Rewards

Calculator Demonstration

Plainfield Avenue Bioretention Islands

- 5,950 ft² bioretention/rain garden
- 96,700 ft² drainage area
- Advanced
 - \$50 per ft² installed
 - Soil media 2ft
 - Drainage layer 1.5ft
 - Ponding .8ft

Center of the Universe Rain Garden

- 300 ft² bioretention/rain garden
- 4,200 ft² drainage area
- Advanced
 - \$5 per ft² installed

Center of the Universe Green Roof

- 2,000 ft² bioretention/rain garden
- 2,000 ft² drainage area
- Advanced
 - LEED Certified Building

Next Steps

1. Comments on Calculator?

- 2. Developing an Evaluation Tool
- 3. Review of current white paper draft

Action. We must preserve this special place for a generations. By gathering our collective hopes and intentions we create a beginning. Our nex step is to act; placing our intentions in policy

commits our communities to sustaining what is

lest for today and tomorrow

4. Email: esisely@wmeac.org

Elaine Sterrett Isely West Michigan Environmental Action Council 1007 Lake SE Grand Rapids, MI 49504 616-451-3051 esisely@wmeac.org

wmeac.org